Найти производную под корнем(cos*кореньcosx)

0 голосов
35 просмотров

Найти производную под корнем(cos*кореньcosx)


Математика (42 баллов) | 35 просмотров
Дан 1 ответ
0 голосов

Пошаговое объяснение:

\sf (\sqrt{\cos \sqrt{\cos x}})'=\dfrac{1}{2\sqrt{\cos \sqrt{\cos x}}}\cdot (\cos \sqrt{\cos x})'=\dfrac{-\sin \sqrt{\cos x}}{2\sqrt{\cos \sqrt{\cos x}}}\cdot\\ \\ \\ \cdot (\sqrt{\cos x})'=-\dfrac{\sin\sqrt{\cos x}}{2\sqrt{\cos \sqrt{\cos x}}}\cdot \dfrac{1}{2\sqrt{\cos x}}\cdot (\cos x)'=\dfrac{\sin x\sin\sqrt{\cos x}}{4\sqrt{\cos x\cos \sqrt{\cos x}}}

(654k баллов)
0

Это всё должно быть под корнем(