Обозначим множитель геометрической прогрессии за х. Тогда первый член г.п. будет 4/х, а последний 4х.
После изменения на 25% среднего члена, в получившейся арифметической прогрессии будет такая зависимость между соседними членами.

При обоих решениях меньший член арифм. прогрессии будет равен 2 (4÷2=4×1/2), а больший = 8 (4×2=4÷1/2).
Значит сумма членов арифм. прогрессии 2+5+8=15