Ответ:
Объяснение:
x(c^2-4)=3(c+2)^2=>x=\frac{3(c+2)^2}{c^2-4} <=>\\<=>x=\frac{3(c+2)}{c-2} \\\frac{x-3}{(c-4)^2}=\frac{2,4}{16-c^2} <=>\frac{5cx-3c+20x-108}{(c-4)^2(c+4)}=0 <=>5cx-3c+20x-108=0<=>\\<=>(5x+20)x+(-3c-108)=0=>x=\frac{3(c+36)}{5(c+4)}" alt="\frac{x}{(c+2)^2} =\frac{3}{c^2-4} <=>x(c^2-4)=3(c+2)^2=>x=\frac{3(c+2)^2}{c^2-4} <=>\\<=>x=\frac{3(c+2)}{c-2} \\\frac{x-3}{(c-4)^2}=\frac{2,4}{16-c^2} <=>\frac{5cx-3c+20x-108}{(c-4)^2(c+4)}=0 <=>5cx-3c+20x-108=0<=>\\<=>(5x+20)x+(-3c-108)=0=>x=\frac{3(c+36)}{5(c+4)}" align="absmiddle" class="latex-formula">