Воспользуемся формулой сумма синусов.



Второе множество не пересекается с первым, т.к. период разный, но место решения второго множества на тригонометрическом круге, полностью совпадает с местом решения первого множества. Т.к. при n={0,5,10...} получается выражение кратное 2πn.
Ответ: 