Решите B1 с рисунком,если можно

0 голосов
6 просмотров

Решите B1 с рисунком,если можно


image

Геометрия (49 баллов) | 6 просмотров
0

Нужно прям подробное решение

0

Там ответ 4,29pi см^2

Дано ответов: 2
0 голосов
Правильный ответ

  Круговой сектор ограничен радиусами, равными 5 см и дугой в 90°. Найдите площадь круга, вписанного в этот сектор. Найдите площадь круга, вписанного в этот сектор.  

Вариант решения.

Ответ: S=4.289π см²                                                 *   *   *

  Обозначим сектор АОВ, центр вписанной окружности О1, точки касания вписанной окружности со сторонами сектора – К на  ОА и М на ОВ, с дугой АВ – т.С. (см. рисунок в приложении)

  Центр вписанной в угол окружности лежит на его биссектрисе,⇒ ∠АОО1=90°:2=45° .

  Четырехугольник ОКО1М - квадрат, его диагональ ОО1=ОС-СО1=R-r,  В ∆ ОКО1 катет КО1=ОО1•sin45°,а т.к. КО1=r, искомый r=(R-r)•√2/2 ⇒ 2r=R√2-r√2 ⇒2r+r√2=R√2. Из этого уравнения r=R√2:(2+√2). Домножив числитель и знаменатель дроби на (2-√2), по формуле сокращенного умножения получим r=R√2•(2-√2):(4-2)⇒ r=R(√2-1). Т.к. R=5 по условию, r=2,07. Формула площади круга S=πr² S=4.289π см²


image
(228k баллов)
0 голосов

...................................................................


image
(25.7k баллов)