Ответ:

Объяснение:
cos(2x)cos^2(x)=0\\cos(2x)=0=>x=\frac{\pi}{4}+\frac{\pi k}{2}\\cos^2(x) =0=>x=\frac{\pi}{2}+\pi k" alt="\sqrt{cos(2x)} cos(x)=0<=>cos(2x)cos^2(x)=0\\cos(2x)=0=>x=\frac{\pi}{4}+\frac{\pi k}{2}\\cos^2(x) =0=>x=\frac{\pi}{2}+\pi k" align="absmiddle" class="latex-formula">