0\\\\\frac{cos3^\circ }{sin42^\circ }>-ctg20^\circ \\\\5)\; \; sinx+cosx=\sqrt2\cdot (\frac{1}{\sqrt2}\cdot sinx+\frac{1}{\sqrt2}\cdot cosx)=\\\\=\sqrt2\cdot (cos\frac{\pi}{4}\cdot sinx+sin\frac{\pi}{4}\cdot cosx)=\sqrt2\cdot sin(x+\frac{\pi}{4})\\\\-1\leq sin(x+\frac{\pi}{4})\leq 1\\\\-\sqrt2\; \leq \sqrt2\cdot sin(x+\frac{\pi}{4})\leq \; \sqrt2" alt="=\frac{2\, sin45^\circ \, cos3^\circ }{2\, sin45^\circ \, sin42^\circ }=\frac{cos3^\circ }{sin42^\circ }>0\\\\\frac{cos3^\circ }{sin42^\circ }>-ctg20^\circ \\\\5)\; \; sinx+cosx=\sqrt2\cdot (\frac{1}{\sqrt2}\cdot sinx+\frac{1}{\sqrt2}\cdot cosx)=\\\\=\sqrt2\cdot (cos\frac{\pi}{4}\cdot sinx+sin\frac{\pi}{4}\cdot cosx)=\sqrt2\cdot sin(x+\frac{\pi}{4})\\\\-1\leq sin(x+\frac{\pi}{4})\leq 1\\\\-\sqrt2\; \leq \sqrt2\cdot sin(x+\frac{\pi}{4})\leq \; \sqrt2" align="absmiddle" class="latex-formula">
Наименьшее значение , наибольшее .