Из концов диаметра AB окружности опущены перпендикуляры АА1 и ВВ1 ** касательную....

0 голосов
82 просмотров

Из концов диаметра AB окружности опущены перпендикуляры АА1 и ВВ1 на касательную. Доказать, что точка касания С является серединой отрезка А1В1


Геометрия | 82 просмотров
Дан 1 ответ
0 голосов

Из центра О окружноси проведем радиус ОК в точку касания К. По т. "Радиус проведенный в точку касания - перпендикулярен касотельной", следовательно имеем 3 перпендикуляра к одной прямой, а по теореме они параллельны между собой. Cледовательно АА1В1В - трапеция, а так как О-середина АВ, то ОК- средняя линия этой трапеции и значит точка К - серединаА1В1

(6.7k баллов)