4) Sn=254,1 xn=170,1 q=3
xn=x₁*qⁿ⁻¹
Sn=x₁*(qⁿ-1)/(q-1)=(x₁qⁿ-x₁)/(q-1)=((x₁qⁿ⁻¹*q)-x₁)/(q-1)=((xn*q)-x₁)/(q-1)
((170,1*3)-x₁)/(3-1)=254,1
(510,3-x₁)/2=254,1 |×2
510,3-x₁=508,2
x₁=2,1
Sn=2,1*(3ⁿ-1)/(3-1)=254,1
2,1*(3ⁿ-1)/2=254,1 |×2
2,1*3ⁿ-2,1=508,2
2,1*3ⁿ=510,3 |÷2,1
3ⁿ=243
3ⁿ=3⁵
n=5.
Ответ: n=5.
3) Sn=105 xn=56 q=2
xn=x₁*qⁿ⁻¹
Sn=x₁*(qⁿ-1)/(q-1)=(x₁qⁿ-x₁)/(q-1)=((x₁qⁿ⁻¹*q)-x₁)/(q-1)=((xn*q)-x₁)/(q-1)
(56*2-x₁)/(2-1)=105
112-x₁=105
x₁=7
Sn=7*(2ⁿ-1)/(2-1)=105
7*2ⁿ-7=105
7*2ⁿ=112 |÷7
2ⁿ=16
2ⁿ=2⁴
n=4
Ответ: n=4.