Осевое сечение кругового цилиндра - прямоугольник, стороны которого х и 3х, а диагональ равна 4√10.
Рассмотрим два случая. 1) х-диаметр основания, тогда 3х- его высота.
тогда х²+(3х)²=16*10, откуда х²=16, а х=4, значит, радиус основания равен
4/2=2 , а высота 3*4=12.
Тогда объем цилиндра равен πr²h=π2²12=48π
2)Рассмотрим второй случай, когда х-высота, тогда 3х- диаметр основания. Значит, х²+(3х)²=16*10, х=4, Значит, высота равна 4, тогда диаметр основания цилиндра 3*4=12, а радиус 12/2=6 и объем цилиндра π6²*4=144π
Ответ. Задача имеет два решения. 48π; 144π
Дерзайте.)