![log^2_{0,5}(x-2)<4 log^2_{0,5}(x-2)<4](https://tex.z-dn.net/?f=log%5E2_%7B0%2C5%7D%28x-2%29%3C4)
ОДЗ: x-2>0 => x>2
![log^2_{0,5}(x-2)-4<0 log^2_{0,5}(x-2)-4<0](https://tex.z-dn.net/?f=log%5E2_%7B0%2C5%7D%28x-2%29-4%3C0)
![log^2_{0,5}(x-2)-2^2<0 log^2_{0,5}(x-2)-2^2<0](https://tex.z-dn.net/?f=log%5E2_%7B0%2C5%7D%28x-2%29-2%5E2%3C0)
Замена:
![log_{0,5}(x-2)=t log_{0,5}(x-2)=t](https://tex.z-dn.net/?f=log_%7B0%2C5%7D%28x-2%29%3Dt)
тогда
![t^2-4<0 t^2-4<0](https://tex.z-dn.net/?f=t%5E2-4%3C0)
![t^2-2^2<0 t^2-2^2<0](https://tex.z-dn.net/?f=t%5E2-2%5E2%3C0)
![(t-2)(t+2)<0 (t-2)(t+2)<0](https://tex.z-dn.net/?f=%28t-2%29%28t%2B2%29%3C0)
![-2<t<2 -2<t<2](https://tex.z-dn.net/?f=-2%3Ct%3C2)
Обратная замена:
![-2<log_{0,5}(x-2)<2 -2<log_{0,5}(x-2)<2](https://tex.z-dn.net/?f=-2%3Clog_%7B0%2C5%7D%28x-2%29%3C2)
![log_{0,5}4<log_{0,5}(x-2)<log_{0,5}0,25 log_{0,5}4<log_{0,5}(x-2)<log_{0,5}0,25](https://tex.z-dn.net/?f=log_%7B0%2C5%7D4%3Clog_%7B0%2C5%7D%28x-2%29%3Clog_%7B0%2C5%7D0%2C25)
Основание 0,5<1, т.е. функция <img src="https://tex.z-dn.net/?f=y%3Dlog_%7B0%2C5%7Dx" id="TexFormula12" title="y=log_{0,5}x" alt="y=log_{0,5}x" align="absmiddle" class="latex-formula"> убывающая, значит, знаки неравенства поменяются на противоположные:
x-2>0,25" alt="4>x-2>0,25" align="absmiddle" class="latex-formula">
или
![0,25<x-2<4 0,25<x-2<4](https://tex.z-dn.net/?f=0%2C25%3Cx-2%3C4)
Ко всем частям неравенства прибавим 2:
![0,25+2<x-2+2<4+2 0,25+2<x-2+2<4+2](https://tex.z-dn.net/?f=0%2C25%2B2%3Cx-2%2B2%3C4%2B2)
![2,25<x<6 2,25<x<6](https://tex.z-dn.net/?f=2%2C25%3Cx%3C6)
Ответ: x∈(2,25; 6)
Пояснение:
![-2=log_{0,5}4\\\\2=log_{0,5}0,25 -2=log_{0,5}4\\\\2=log_{0,5}0,25](https://tex.z-dn.net/?f=-2%3Dlog_%7B0%2C5%7D4%5C%5C%5C%5C2%3Dlog_%7B0%2C5%7D0%2C25)