Найдите все простые числа p и q,что p²+q³и p³ + q² - тоже простые

0 голосов
97 просмотров

Найдите все простые числа p и q,что p²+q³и p³ + q² - тоже простые


Алгебра (66 баллов) | 97 просмотров
Дан 1 ответ
0 голосов

1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.

2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.

2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).

Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.

2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.

Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).

Ответ: p=2, q=3 или же p=3, q=2.

(787 баллов)
0

В пункте номер 2.1 опечатка

0

Там должно быть "То есть делится на 3", а не на 9

0

Исправил

0

здравствуйте! У меня на странице висит задача про копилку с грошами ,не могли бы Вы помочь её решить