Пусть N – точка пересечения прямых DK и BC (рис. в центре). Треугольники KAD и KBN равны по второму признаку. Отсюда NB = BC, и BM является серединным перпендикуляром к отрезку CN. Значит, точка M равноудалена от точек N, C и D, то есть является центром описанной окружности треугольника NCD. Поэтому MK ⊥ ND.