Пошаговое объяснение:
1. Дано : f(x) = 15x³ - 15*x²
Экстремумы в корнях первой производной.
1) f'(x) = 15*3*x² - 15*2*x = 0 - квадратное уравнение.
После упрощения - делим на 15 и выносим Х за скобки.
2) f'(x) = 3x²-2x = x*(x - 2/3 x) = 0 - разложили на множители.
Корни: х1 =0 и х2 = 2/3
Вычисляем сами экстремумы.
f(0) = 0 - максимум - ответ
f( 2/3) = - 2 2/9 - минимум - ответ (≈-2.22)
2. Вычислить интеграл.
![F(x)=\int\limits^3_2 {(1-4x+x^2}) \, dx=\frac{x}{1}-\frac{4x^2}{2}+\frac{x^3}{3} F(x)=\int\limits^3_2 {(1-4x+x^2}) \, dx=\frac{x}{1}-\frac{4x^2}{2}+\frac{x^3}{3}](https://tex.z-dn.net/?f=F%28x%29%3D%5Cint%5Climits%5E3_2%20%7B%281-4x%2Bx%5E2%7D%29%20%5C%2C%20dx%3D%5Cfrac%7Bx%7D%7B1%7D-%5Cfrac%7B4x%5E2%7D%7B2%7D%2B%5Cfrac%7Bx%5E3%7D%7B3%7D)
Вычисляем на границах интегрирования.
F(3) = 3 - 2*9 + 27/3 = = -6
F(2) = - 10/3
F = F(3) - F(2) = - 8/3 = - 2 2/3 - интеграл - ответ.
3. Производная от y(x) = x³ - 3*eˣ
y'(x) = (x³)' + (-3*eˣ)' = 3*x² - 3*eˣ - ответ