Решаем как обычно способом подстановки:
Из первого уравнения:
y=(-ax+2a)/(a-1)
a≠1
подставляем во второе
(3a+6)x + (4a+1)·(-ax+2a)/(a-1)=a+5;
(3a+6)·(a-1)+(4a+1)(-ax)+(4a+1)·2a=(a+5)(a-1)
(3a²+6a-3a-6-4a²-a)·x=(a²+5a-a-5)-8a²-2a
(-a²+2a-6)·x=(-7a²+2a-5)
(a²-2a+6)·x=(7a²-2a+5)
a²-2a+6 >0 при любом a, D<0</p>
7a²-2a+5>0 при любом a, D<0</p>
x=(7a²-2a+5)/(a²-2a+6) - единственное решение
в том числе и при а =1
х=10/5=2
y=(-a·(7a²-2a+5)/(a²-2a+6) +2a)/(a-1)