![\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}=\frac{1}{(x)(x+4)} \frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}=\frac{1}{(x)(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%28x%2B1%29%7D%2B%5Cfrac%7B1%7D%7B%28x%2B1%29%28x%2B2%29%7D%2B%5Cfrac%7B1%7D%7B%28x%2B2%29%28x%2B3%29%7D%2B%5Cfrac%7B1%7D%7B%28x%2B3%29%28x%2B4%29%7D%3D%5Cfrac%7B1%7D%7B%28x%29%28x%2B4%29%7D)
1) Каждое слагаемое представим в виде разности двух дробей:
![1)\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1} 1)\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}](https://tex.z-dn.net/?f=1%29%5Cfrac%7B1%7D%7Bx%28x%2B1%29%7D%3D%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%7D%7Bx%2B1%7D)
![2)\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2} 2)\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2}](https://tex.z-dn.net/?f=2%29%5Cfrac%7B1%7D%7B%28x%2B1%29%28x%2B2%29%7D%3D%5Cfrac%7B1%7D%7Bx%2B1%7D-%5Cfrac%7B1%7D%7Bx%2B2%7D)
![3)\frac{1}{(x+2)(x+3)}=\frac{1}{x+2}-\frac{1}{x+3} 3)\frac{1}{(x+2)(x+3)}=\frac{1}{x+2}-\frac{1}{x+3}](https://tex.z-dn.net/?f=3%29%5Cfrac%7B1%7D%7B%28x%2B2%29%28x%2B3%29%7D%3D%5Cfrac%7B1%7D%7Bx%2B2%7D-%5Cfrac%7B1%7D%7Bx%2B3%7D)
![4)\frac{1}{(x+3)(x+4)}=\frac{1}{x+3}-\frac{1}{x+4} 4)\frac{1}{(x+3)(x+4)}=\frac{1}{x+3}-\frac{1}{x+4}](https://tex.z-dn.net/?f=4%29%5Cfrac%7B1%7D%7B%28x%2B3%29%28x%2B4%29%7D%3D%5Cfrac%7B1%7D%7Bx%2B3%7D-%5Cfrac%7B1%7D%7Bx%2B4%7D)
2) А теперь данное равенство примет вид:
![\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}=\frac{4}{x(x+4)} \frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%7D%7Bx%2B1%7D%2B%5Cfrac%7B1%7D%7Bx%2B1%7D-%5Cfrac%7B1%7D%7Bx%2B2%7D%2B%5Cfrac%7B1%7D%7Bx%2B2%7D-%5Cfrac%7B1%7D%7Bx%2B3%7D%2B%5Cfrac%7B1%7D%7Bx%2B3%7D-%5Cfrac%7B1%7D%7Bx%2B4%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
![\frac{1}{x}-(\frac{1}{x+1}-\frac{1}{x+1})-(\frac{1}{x+2}-\frac{1}{x+2})-(\frac{1}{x+3}-\frac{1}{x+3})-\frac{1}{x+4}=\frac{4}{x(x+4)} \frac{1}{x}-(\frac{1}{x+1}-\frac{1}{x+1})-(\frac{1}{x+2}-\frac{1}{x+2})-(\frac{1}{x+3}-\frac{1}{x+3})-\frac{1}{x+4}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D-%28%5Cfrac%7B1%7D%7Bx%2B1%7D-%5Cfrac%7B1%7D%7Bx%2B1%7D%29-%28%5Cfrac%7B1%7D%7Bx%2B2%7D-%5Cfrac%7B1%7D%7Bx%2B2%7D%29-%28%5Cfrac%7B1%7D%7Bx%2B3%7D-%5Cfrac%7B1%7D%7Bx%2B3%7D%29-%5Cfrac%7B1%7D%7Bx%2B4%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
![\frac{1}{x}-0-0-0-\frac{1}{x+4}=\frac{4}{x(x+4)} \frac{1}{x}-0-0-0-\frac{1}{x+4}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D-0-0-0-%5Cfrac%7B1%7D%7Bx%2B4%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
![\frac{1}{x}-\frac{1}{x+4}=\frac{4}{x(x+4)} \frac{1}{x}-\frac{1}{x+4}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%7D%7Bx%2B4%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
![\frac{x+4-x}{x(x+4)}=\frac{4}{x(x+4)} \frac{x+4-x}{x(x+4)}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B4-x%7D%7Bx%28x%2B4%29%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
![\frac{4}{x(x+4)}=\frac{4}{x(x+4)} \frac{4}{x(x+4)}=\frac{4}{x(x+4)}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D%3D%5Cfrac%7B4%7D%7Bx%28x%2B4%29%7D)
Доказано.
Если х≠0; х≠ -1; х≠ -2; х≠ -3; х≠ -4, тогда данное равенство является тождеством.
Иначе, при всех значениях х, кроме 0; -1; -2; -3; 4 данное равенство является тождеством.