![image](https://tex.z-dn.net/?f=1%29%5C%5C%0An-%3E%2Boo%5C+%5Cfrac%7B2n%5E2-1%7D%7Bn%5E2%2B5%7D)
+oo\ \frac{2n^2-1}{n^2+5}" alt="1)\\
n->+oo\ \frac{2n^2-1}{n^2+5}" align="absmiddle" class="latex-formula">
поделим числитель и знаменатель на n^2 , получим
так как
![\frac{1}{n^2} \frac{1}{n^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bn%5E2%7D)
при n->oo всегда стремится к 0
Ответ 2
![image](https://tex.z-dn.net/?f=2%29%5C%5C%0An-%3E%2Boo+%5C+%5Cfrac%7Bn%5E2-1%7D%7Bn%5E3%2Bn%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7Bn%7D-%5Cfrac%7B1%7D%7Bn%5E3%7D%7D%7B1%2B%5Cfrac%7B1%7D%7Bn%5E2%7D%7D%3D%5Cfrac%7B0%7D%7B1%7D%3D0)
+oo \ \frac{n^2-1}{n^3+n}=\frac{\frac{1}{n}-\frac{1}{n^3}}{1+\frac{1}{n^2}}=\frac{0}{1}=0" alt="2)\\
n->+oo \ \frac{n^2-1}{n^3+n}=\frac{\frac{1}{n}-\frac{1}{n^3}}{1+\frac{1}{n^2}}=\frac{0}{1}=0" align="absmiddle" class="latex-formula">
Ответ 0