Cos4x + 2Cos²x = 1
Cos4x = 1 - 2Cos²x
2Cos²2x -1 = - Cos2x
Cos2x = t
2t² +t -1 = 0
D = 1 -4*2*(-1)=9
t₁ = 1/2 t₂=-1
Cos2x = 1/2 Cos2x = -1
2x = +-π/3 + 2πk, k ∈Z 2x = π + 2πn , n ∈ Z
x = +- π/6 +πk , k ∈Z x = π/2 + πn , n ∈Z
(использовалась формула: Сos2α= 1 - 2Cos²α )