0 \\ - 4 log(2x) = 12 - log(2)^{2} \\ log(2x) = \frac{12 - log(2)^{2} }{ - 4} \\ log(2x) = - 3 + \frac{ { log(2) }^{2} }{4} \\ 2x = 10^{ - 3 + \frac{ { log(2) }^{2} }{4} } \\ x = \frac{10^{ - 3 + \frac{ { log(2) }^{2} }{4} } }{2} " alt=" log(2)^{2} - 4 log(2x) = 12 \\ x > 0 \\ - 4 log(2x) = 12 - log(2)^{2} \\ log(2x) = \frac{12 - log(2)^{2} }{ - 4} \\ log(2x) = - 3 + \frac{ { log(2) }^{2} }{4} \\ 2x = 10^{ - 3 + \frac{ { log(2) }^{2} }{4} } \\ x = \frac{10^{ - 3 + \frac{ { log(2) }^{2} }{4} } }{2} " align="absmiddle" class="latex-formula">