Помогите пожалуйста решить: Дан треугольник CDE: угол CDE=68 градусов. DM биссектриса...

0 голосов
222 просмотров

Помогите пожалуйста решить: Дан треугольник CDE: угол CDE=68 градусов. DM биссектриса угла CDE. т. М лежит на стороне CE. Проведите MN//CD, т.N-на стороне DE. Выделите треугольник DMN и найдите его углы: угол MDN, угол DNM, угол NMD


Геометрия (142 баллов) | 222 просмотров
Дан 1 ответ
0 голосов

∠CDM=∠NDM=∠CDN/2 =34° (DM - биссектриса ∠CDN)

∠DNM=180°-∠CDN =180°-68°=112° (∠CDN, ∠DNM - внутренние односторонние при CD||MN)

∠NMD=∠CDM =34° (∠CDM, ∠NMD - накрест лежащие при CD||MN)


image
(18.3k баллов)
0

Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник (D - внутренний угол при CD||MN, DNM - равнобедренный треугольник).