0\; ,\; x\ne \frac{1}{2}\\\\\frac{1}{log_{16}x^2}+\frac{1}{log_{64}2x}=3\\\\\star \; \; log_{16}x^2=2\cdot log_{16}x=2\cdot \frac{1}{4}\cdot log_2x=\frac{1}{2}\cdot log_2x\; \; \star \\\\\star \; \; log_{64}2x=\frac{1}{6}\cdot log_22x=\frac{1}{6}\cdot (1+log_2x)\; \; \star " alt="log_{x^2}16+log_{2x}64=3\; \; ,\; \; \; ODZ:\; x>0\; ,\; x\ne \frac{1}{2}\\\\\frac{1}{log_{16}x^2}+\frac{1}{log_{64}2x}=3\\\\\star \; \; log_{16}x^2=2\cdot log_{16}x=2\cdot \frac{1}{4}\cdot log_2x=\frac{1}{2}\cdot log_2x\; \; \star \\\\\star \; \; log_{64}2x=\frac{1}{6}\cdot log_22x=\frac{1}{6}\cdot (1+log_2x)\; \; \star " align="absmiddle" class="latex-formula">