Функция косинуса определена на промежутке [-1; 1], поэтому включаем ОДЗ:
-1 ≤ a ≤ 1
a² - 3a + 1 ≥ -1
a² - 3a + 2 ≥ 0
Решим дискриминант и найдём корни:
a² - 3a + 2 = 0
D = b² - 4ac = 9 - 8 = 1
x₁₂ = (3 ± 1) / 2 = 2; 1
(1) (x - 2)(x - 1) ≥ 1
a² - 3a + 1 ≤ 1
a² - 3a ≤ 0
(2) a · (a - 3) ≤ 0
Объединим (1) и (2) неравенства:
a ∈ [0; 1] U [2; 3]
Так как по ОДЗ мы определены в -1 ≤ a ≤ 1, то последнее включение отпадает.
Ответ
a ∈ [0; 1]