Найдите площадь фигуры, ограниченной линиями: y=x^2+2x+5, y=5-2x

0 голосов
27 просмотров

Найдите площадь фигуры, ограниченной линиями: y=x^2+2x+5, y=5-2x


Математика (14 баллов) | 27 просмотров
Дан 1 ответ
0 голосов

Ответ:


Пошаговое объяснение:

вычислим площадь фигуры с помощью интегралов.

Найдём пределы интегрирования решив уравнение

x^2 + 2x +5 = 5 - 2x

x^2 + 4x = 0

x(x+4) = 0 откуда x=0 , x= -4

S=∫

\int\limits^ -4_0 {(5-x-x^2-2x-5)} \, dx

(289 баллов)
0

я немного не понял последнюю строчку