Задача
2: Двое по очереди,
вдоль углублений, ломают шоколадку 3 × 5. Каждый съедает все плитки
1 × 1, которые образуются после его хода. Выигрывает тот, кто съест
больше плиток 1 × 1. Кто, начинающий или его партнер съест больше
шоколада?
Задача
3: Семиклассник
разрезал квадрат на прямоугольники периметра 7, а восьмиклассник – на
прямоугольники периметра 8. Могло ли у восьмиклассника получиться больше
прямоугольников?
Задача4:По кольцевой дороге курсируют с одинаковой
скоростью и равными интервалами 12 трамваев. Сколько трамваев надо добавить,
чтобы при той же скорости интервалы между трамваями уменьшились бы на одну
пятую?
Задача 5.В многосерийном
фильме 44 серии. Фильм показывают в понедельник, вторник, среду и четверг, по
две серии в день. В какой день недели будет показана последняя серия? Запиши в
ответ название дня.
Задача 6: Червяк ползет по столбу,
начав путь от его основания. Каждый день он проползает вверх на 5 см, а за
каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его
высота равна 75 см?
Задача 7: В
примере на сложение цифры заменили буквами (причем одинаковые цифры –
одинаковыми буквами, а разные цифры – разными буквами) и получили:
БУЛОК + БЫЛО = МНОГО. Сколько же было булок? Их количество
есть максимальное возможное значение числа МНОГО
Задача 8: Как разложить по семи
кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно
было бы выдать, не открывая кошельков?
Задача 9: Все костяшки домино выложили
в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?
Задача 10: Петя купил общую тетрадь
объемом 96 листов и пронумеровал все ее страницы по порядку числами от 1 до
192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на
них написаны. Могло ли у него получиться 1990?
Задача 11: Кузнечик прыгает по прямой,
причем в первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2
см и так далее. Докажите, что после 1985 прыжков он не может оказаться там, где
начинал.
Задача 12: В народной дружине 100
человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое
время оказаться так, что каждый с каждым дежурил ровно один раз?
Задача 13: Имеется две кучки камней –
по 7 в каждой. За ход разрешается взять любое количество камней, но только из
одной кучки. Проигрывает тот, кому нечего брать.
Задача 14: В государстве 100 городов, и
из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?