{0.8}^{x} \\ x \geqslant \frac{3}{4} " alt="0.8 ^{ \sqrt{4x - 3} } > {0.8}^{x} \\ x \geqslant \frac{3}{4} " align="absmiddle" class="latex-formula">
это первое условие (Подкоренное больше или равно 0)
где х>=0(х <0, не рассматриваю, т.к 1) условие дает нам положит значения)<br>Меняем знак неравенства, т.к основание меньше 1.
0 \\ (x - 3)(x - 1) > 0 \\ xc( - \infty .1) \: and(3. + \infty )" alt="4x - 3 < {x}^{2} \\ {x}^{2} - 4x + 3 > 0 \\ (x - 3)(x - 1) > 0 \\ xc( - \infty .1) \: and(3. + \infty )" align="absmiddle" class="latex-formula">
Сочетая все условия получаем:
х €(3/4;1)\/(3;+беск)