![1)log_{5}\frac{25}{\sqrt[3]{5} }+log_{7} \sqrt[3]{49}= log_{5}\frac{5^{2} }{5^{\frac{1}{3} } }+log_{7}7^{\frac{2}{3} }=log_{5}5^{\frac{5}{3} }+\frac{2}{3}=\frac{5}{3}+\frac{2}{3}=2\frac{1}{3} 1)log_{5}\frac{25}{\sqrt[3]{5} }+log_{7} \sqrt[3]{49}= log_{5}\frac{5^{2} }{5^{\frac{1}{3} } }+log_{7}7^{\frac{2}{3} }=log_{5}5^{\frac{5}{3} }+\frac{2}{3}=\frac{5}{3}+\frac{2}{3}=2\frac{1}{3}](https://tex.z-dn.net/?f=1%29log_%7B5%7D%5Cfrac%7B25%7D%7B%5Csqrt%5B3%5D%7B5%7D%20%7D%2Blog_%7B7%7D%20%5Csqrt%5B3%5D%7B49%7D%3D%20log_%7B5%7D%5Cfrac%7B5%5E%7B2%7D%20%7D%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%2Blog_%7B7%7D7%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%3Dlog_%7B5%7D5%5E%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%2B%5Cfrac%7B2%7D%7B3%7D%3D%5Cfrac%7B5%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%7D%3D2%5Cfrac%7B1%7D%7B3%7D)
![2)10^{lg(0,5x^{2}) } =8\\\\0,5x^{2}=8\\\\x^{2}=16\\\\x_{1}=4\\\\x_{2}=-4 2)10^{lg(0,5x^{2}) } =8\\\\0,5x^{2}=8\\\\x^{2}=16\\\\x_{1}=4\\\\x_{2}=-4](https://tex.z-dn.net/?f=2%2910%5E%7Blg%280%2C5x%5E%7B2%7D%29%20%7D%20%3D8%5C%5C%5C%5C0%2C5x%5E%7B2%7D%3D8%5C%5C%5C%5Cx%5E%7B2%7D%3D16%5C%5C%5C%5Cx_%7B1%7D%3D4%5C%5C%5C%5Cx_%7B2%7D%3D-4)
![3)2^{-log_{2}x }=5^{log_{5}\frac{1}{3}} \\\\2^{log_{2}\frac{1}{x}}=\frac{1}{3}\\\\\frac{1}{x}=\frac{1}{3}\\\\x=3 3)2^{-log_{2}x }=5^{log_{5}\frac{1}{3}} \\\\2^{log_{2}\frac{1}{x}}=\frac{1}{3}\\\\\frac{1}{x}=\frac{1}{3}\\\\x=3](https://tex.z-dn.net/?f=3%292%5E%7B-log_%7B2%7Dx%20%7D%3D5%5E%7Blog_%7B5%7D%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C2%5E%7Blog_%7B2%7D%5Cfrac%7B1%7D%7Bx%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C%5Cfrac%7B1%7D%7Bx%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5Cx%3D3)
4) ОДЗ:
1)2x + 3 > 0 ⇒ 2x > - 3 ⇒ x > - 1,5
2) x + 5 > 0 ⇒ x > - 5
Окончательно : x > - 1,5
![log_{5}(2x+3)=log_{5}(x+5)\\\\2x+3=x+5\\\\x=2 log_{5}(2x+3)=log_{5}(x+5)\\\\2x+3=x+5\\\\x=2](https://tex.z-dn.net/?f=log_%7B5%7D%282x%2B3%29%3Dlog_%7B5%7D%28x%2B5%29%5C%5C%5C%5C2x%2B3%3Dx%2B5%5C%5C%5C%5Cx%3D2)
5)ОДЗ :
1) x² - 2x + 4 > 0
x² - 2x + 4 = 0
D = (-2)² - 4 * 4 = 4 - 16 = - 12 < 0
Дискриминант меньше нуля а старший коэффициент больше нуля значит x² - 2x + 4 больше нуля при любых действительных значениях x.
2) x > 0 и x ≠ 1
![log_{x}(x^{2}-2x+4)=1\\\\x^{2}-2x+4=x\\\\x^{2}-3x+4=0\\\\D=(-3)^{2}-4*4=9-16=-7<0 log_{x}(x^{2}-2x+4)=1\\\\x^{2}-2x+4=x\\\\x^{2}-3x+4=0\\\\D=(-3)^{2}-4*4=9-16=-7<0](https://tex.z-dn.net/?f=log_%7Bx%7D%28x%5E%7B2%7D-2x%2B4%29%3D1%5C%5C%5C%5Cx%5E%7B2%7D-2x%2B4%3Dx%5C%5C%5C%5Cx%5E%7B2%7D-3x%2B4%3D0%5C%5C%5C%5CD%3D%28-3%29%5E%7B2%7D-4%2A4%3D9-16%3D-7%3C0)
Решений нет