Ответ:
Пошаговое объяснение:
(uv)' = u'v + uv'
a) f'(x) = (x³ + 6x+1)'(x+1) + (x³ + 6x + 1)(x+1)' = (3x² + 6)(x + 1) + (x³ + 6x + 1)*1 =
3x³ + 6x + 3x² + 6 + x³ + 6x + 1 = 4x³ + 3x² + 12x + 7
f'(1) = 4 + 3 + 12 + 7 = 26
(u/v)' = (u'v - uv')/v²
б) ((4x-7)'(x²+4) - (4x-7)(x²+4)')/(x²+4)² = (4x² + 16 - 8x² + 14x)/(x²+4)² = (14x+16-4x²)/(x²+4)²
f'(1) = (14+16-4)/25 = 26/25 = 1,04