а) Найдем координаты векторов EK и PM:
EK = (1 - (-3); 4 - 1) = (4; 3)
PM = (2 - (-4); 1 - a) = (6; 1 - a)
Вектора перпендикулярны, если их скалярное произведение равно 0:
4 * 6 + 3 * (1 - a) = 0
3a = 27
a = 9
б) PE = (-3 - (-4); 1 - 9) = (1; -8)
EK = (1 - (-3); 4 - 1) = (4; 3)
Найдем косинус угла между векторами:
![\cos{(\widehat{\vec{PE},\vec{EK}})}=\frac{|(\vec{PE},\vec{EK})|}{|PE|*|EK|}=\frac{|1*4+(-8)*3|}{\sqrt{1^2+(-8)^2}*\sqrt{4^2+3^2}}=\frac{20}{\sqrt{65}*5}=\frac{4}{\sqrt{65}} \cos{(\widehat{\vec{PE},\vec{EK}})}=\frac{|(\vec{PE},\vec{EK})|}{|PE|*|EK|}=\frac{|1*4+(-8)*3|}{\sqrt{1^2+(-8)^2}*\sqrt{4^2+3^2}}=\frac{20}{\sqrt{65}*5}=\frac{4}{\sqrt{65}}](https://tex.z-dn.net/?f=%5Ccos%7B%28%5Cwidehat%7B%5Cvec%7BPE%7D%2C%5Cvec%7BEK%7D%7D%29%7D%3D%5Cfrac%7B%7C%28%5Cvec%7BPE%7D%2C%5Cvec%7BEK%7D%29%7C%7D%7B%7CPE%7C%2A%7CEK%7C%7D%3D%5Cfrac%7B%7C1%2A4%2B%28-8%29%2A3%7C%7D%7B%5Csqrt%7B1%5E2%2B%28-8%29%5E2%7D%2A%5Csqrt%7B4%5E2%2B3%5E2%7D%7D%3D%5Cfrac%7B20%7D%7B%5Csqrt%7B65%7D%2A5%7D%3D%5Cfrac%7B4%7D%7B%5Csqrt%7B65%7D%7D)
![\widehat{\vec{PE},\vec{EK}}=\arccos{\frac{4}{\sqrt{65}}} \widehat{\vec{PE},\vec{EK}}=\arccos{\frac{4}{\sqrt{65}}}](https://tex.z-dn.net/?f=%5Cwidehat%7B%5Cvec%7BPE%7D%2C%5Cvec%7BEK%7D%7D%3D%5Carccos%7B%5Cfrac%7B4%7D%7B%5Csqrt%7B65%7D%7D%7D)