Какая пара является решением системы уравнений

0 голосов
30 просмотров

Какая пара является решением системы уравнений


Геометрия (12 баллов) | 30 просмотров
Дано ответов: 2
0 голосов

Решение во вложении. Удачи


image
(7.1k баллов)
0 голосов

image\left \{ {{x^2+y^25} \atop {y=-8+2x}} \right. =>x^2(-8+2x)^2=25=>5x^2-32x+39=0=>x=\frac{16+\sqrt{61} }{5} \\x=\frac{16-\sqrt{61} }{5} \\y=-8+2*x=\frac{16+\sqrt{61} }{5} =>y=\frac{-8+2\sqrt{61} }{5}\\y=-8+2*x=\frac{16-\sqrt{61} }{5} =>y=-\frac{8+2\sqrt{61} }{5} \\\\(x_0;y_0)=(\frac{16+\sqrt{61} }{5} ;\frac{-8+\2sqrt{61} }{5} )\\(x_1;y_1)=(\frac{16-\sqrt{61} }{5} ;-\frac{8+2\sqrt{61} }{5} )" alt="\left \{ {{x^2+y^2=25} \atop {2x-y=8}} \right. =>\left \{ {{x^2+y^25} \atop {y=-8+2x}} \right. =>x^2(-8+2x)^2=25=>5x^2-32x+39=0=>x=\frac{16+\sqrt{61} }{5} \\x=\frac{16-\sqrt{61} }{5} \\y=-8+2*x=\frac{16+\sqrt{61} }{5} =>y=\frac{-8+2\sqrt{61} }{5}\\y=-8+2*x=\frac{16-\sqrt{61} }{5} =>y=-\frac{8+2\sqrt{61} }{5} \\\\(x_0;y_0)=(\frac{16+\sqrt{61} }{5} ;\frac{-8+\2sqrt{61} }{5} )\\(x_1;y_1)=(\frac{16-\sqrt{61} }{5} ;-\frac{8+2\sqrt{61} }{5} )" align="absmiddle" class="latex-formula">

(1.3k баллов)