Ладно, подойдем к решению с другого бока.
Работа силы сопротивления стены по торможению пули на всей толщине стены:
А1 = Ек0 - Ек1 = ½×m×(v1²-vo²) = -f×s1
где m - масса пули, Vo - скорость на входе в стену, V1 - конечная скорость пули, s1 - толщина стены, f - сила сопротивления стены, которую мы считаем постоянной. С минусом она потому, что направлена против движения пули (угол между вектором скорости и вектором силы 180 гр, а cos 180 = - 1)
Выразим отсюда силу F:
Теперь обозначим половину толщины стены как S2, a скорость в середине стены как v. По аналогии выведем для этих значений ту же силу сопротивления f:
Теперь, поскольку левые части равны, приравняем правые части обеих формул, поделив при этом их на -m/2:
Выразим v:
Подставив значения, получаем:
v = корень(0,1 м/0,2 м × (0 - 160000 м²/с²) + 160000 м²/с²) = корень(80000 м²/с²) ≈ 283 м/с
Ответ: в середине стены скорость пули была примерно 283 м/с