![(4^x-5)^2+2\cdot4^x=9|4^x-5|. (4^x-5)^2+2\cdot4^x=9|4^x-5|.](https://tex.z-dn.net/?f=%284%5Ex-5%29%5E2%2B2%5Ccdot4%5Ex%3D9%7C4%5Ex-5%7C.)
Рассмотрим 2 случая
1) ![4^x-5<0\Rightarrow 4^x<5 \Rightarrow x<\log_45. 4^x-5<0\Rightarrow 4^x<5 \Rightarrow x<\log_45.](https://tex.z-dn.net/?f=4%5Ex-5%3C0%5CRightarrow%204%5Ex%3C5%20%5CRightarrow%20x%3C%5Clog_45.)
Тогда получим:
0\\t^2+t-20=0;\\t_1=-5<0,\,t_2=4;\\4^x=4\Rightarrow \underline{x=1}<\log_45." alt="(4^x-5)^2+2\cdot4^x+9(4^x-5)=0;\\4^{2x}+4^x-20=0;\, 4^x=t>0\\t^2+t-20=0;\\t_1=-5<0,\,t_2=4;\\4^x=4\Rightarrow \underline{x=1}<\log_45." align="absmiddle" class="latex-formula">
2) ![4^x-5\ge 0\Rightarrow 4^x\ge 5 \Rightarrow x\ge\log_45. 4^x-5\ge 0\Rightarrow 4^x\ge 5 \Rightarrow x\ge\log_45.](https://tex.z-dn.net/?f=4%5Ex-5%5Cge%200%5CRightarrow%204%5Ex%5Cge%205%20%5CRightarrow%20x%5Cge%5Clog_45.)
Тогда получим:
0\\t^2-17t+70=0;\\t_1=7,\,t_2=10;\\4^x=7\Rightarrow \underline{x=\log_47}>\log_45;\\4^x=10\Rightarrow \underline{x=\log_410}>\log_45" alt="(4^x-5)^2+2\cdot4^x-9(4^x-5)=0;\\4^{2x}-17\cdot4^x+70=0;\, 4^x=t>0\\t^2-17t+70=0;\\t_1=7,\,t_2=10;\\4^x=7\Rightarrow \underline{x=\log_47}>\log_45;\\4^x=10\Rightarrow \underline{x=\log_410}>\log_45" align="absmiddle" class="latex-formula">
Ответ: ![x_1=1,\,x_2=\log_47,\,x_3=\log_410. x_1=1,\,x_2=\log_47,\,x_3=\log_410.](https://tex.z-dn.net/?f=x_1%3D1%2C%5C%2Cx_2%3D%5Clog_47%2C%5C%2Cx_3%3D%5Clog_410.)