Т.к. ΔАВС - равнобедренный (АВ = ВС), ВD - общая и медиана, то АD = DС → ΔАВD = ΔDВC (свойство треугольников - по трём сторонам).
Если АК = КВ, ВМ = МС; из равенства треугольников ΔАВD и ΔDВC следует: АК = КВ = ВМ = МС, КD = DМ → ΔАКD = ΔСМD (свойство треугольников - по трём сторонам).
Из равенства треугольников ΔАКD и ΔСМD следует: ∠АКD = ∠CМD
Док-но.