0~~~\Rightarrow~~~x(x-5)>0\\~~~~~x\in(-\infty;0)\cup(5;+\infty)\\\\2)~x^2>0~~~\Rightarrow~~~x\neq0\\~~~~~x\in(-\infty;0)\cup(0;+\infty)\\\\3)~\log_5x^2\neq0;~~~\Rightarrow~~~x^2\neq1~~~\Rightarrow~~~x\neq\pm1\\~~~~x\in(-\infty;-1)\cup(-1;1)\cup(1;+\infty)\\\\\boxed{\boldsymbol{D:~~x\in(-\infty;-1)\cup(-1;0)\cup(5;+\infty)}}" alt="\dfrac{2\log_5(x^2-5x)}{\log_5x^2}\leq1\\\\1)~(x^2-5x)>0~~~\Rightarrow~~~x(x-5)>0\\~~~~~x\in(-\infty;0)\cup(5;+\infty)\\\\2)~x^2>0~~~\Rightarrow~~~x\neq0\\~~~~~x\in(-\infty;0)\cup(0;+\infty)\\\\3)~\log_5x^2\neq0;~~~\Rightarrow~~~x^2\neq1~~~\Rightarrow~~~x\neq\pm1\\~~~~x\in(-\infty;-1)\cup(-1;1)\cup(1;+\infty)\\\\\boxed{\boldsymbol{D:~~x\in(-\infty;-1)\cup(-1;0)\cup(5;+\infty)}}" align="absmiddle" class="latex-formula">
![\dfrac{2\log_5(x^2-5x)}{\log_5x^2}\leq1~~~~\Leftrightarrow~~~~\dfrac{2\log_5(x^2-5x)}{\log_5x^2}-1\leq0\\\\\\\dfrac{\log_5(x^2-5x)^2-\log_5x^2}{\log_5x^2}\leq0\\\\\\\dfrac{\log_5\bigg(\dfrac{(x^2-5x)^2}{x^2}\bigg)}{\log_5x^2}\leq0~~~~\Leftrightarrow~~~~\dfrac{\log_5\bigg(\dfrac{x^2-5x}x\bigg)^2}{\log_5x^2}\leq0 \dfrac{2\log_5(x^2-5x)}{\log_5x^2}\leq1~~~~\Leftrightarrow~~~~\dfrac{2\log_5(x^2-5x)}{\log_5x^2}-1\leq0\\\\\\\dfrac{\log_5(x^2-5x)^2-\log_5x^2}{\log_5x^2}\leq0\\\\\\\dfrac{\log_5\bigg(\dfrac{(x^2-5x)^2}{x^2}\bigg)}{\log_5x^2}\leq0~~~~\Leftrightarrow~~~~\dfrac{\log_5\bigg(\dfrac{x^2-5x}x\bigg)^2}{\log_5x^2}\leq0](https://tex.z-dn.net/?f=%5Cdfrac%7B2%5Clog_5%28x%5E2-5x%29%7D%7B%5Clog_5x%5E2%7D%5Cleq1~~~~%5CLeftrightarrow~~~~%5Cdfrac%7B2%5Clog_5%28x%5E2-5x%29%7D%7B%5Clog_5x%5E2%7D-1%5Cleq0%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%5Clog_5%28x%5E2-5x%29%5E2-%5Clog_5x%5E2%7D%7B%5Clog_5x%5E2%7D%5Cleq0%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%5Clog_5%5Cbigg%28%5Cdfrac%7B%28x%5E2-5x%29%5E2%7D%7Bx%5E2%7D%5Cbigg%29%7D%7B%5Clog_5x%5E2%7D%5Cleq0~~~~%5CLeftrightarrow~~~~%5Cdfrac%7B%5Clog_5%5Cbigg%28%5Cdfrac%7Bx%5E2-5x%7Dx%5Cbigg%29%5E2%7D%7B%5Clog_5x%5E2%7D%5Cleq0)
![\displaystyle\dfrac{\log_5(x-5)^2}{\log_5x^2}\leq0\\\\1)~\log_5(x-5)^2=0;~~~(x-5)^2=1\\\\~~~~~\left[\begin{array}{c}x-5=1\\x-5=-1\end{array}~~~\Rightarrow~~~\left[\begin{array}{c}x_1=6\\x_2=4\end{array} \displaystyle\dfrac{\log_5(x-5)^2}{\log_5x^2}\leq0\\\\1)~\log_5(x-5)^2=0;~~~(x-5)^2=1\\\\~~~~~\left[\begin{array}{c}x-5=1\\x-5=-1\end{array}~~~\Rightarrow~~~\left[\begin{array}{c}x_1=6\\x_2=4\end{array}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cdfrac%7B%5Clog_5%28x-5%29%5E2%7D%7B%5Clog_5x%5E2%7D%5Cleq0%5C%5C%5C%5C1%29~%5Clog_5%28x-5%29%5E2%3D0%3B~~~%28x-5%29%5E2%3D1%5C%5C%5C%5C~~~~~%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx-5%3D1%5C%5Cx-5%3D-1%5Cend%7Barray%7D~~~%5CRightarrow~~~%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%3D6%5C%5Cx_2%3D4%5Cend%7Barray%7D)
![2)~\log_5x^2\neq0;~~\Rightarrow~~x^2\neq1;~~\Rightarrow~~x_{3,4}\neq\pm1 2)~\log_5x^2\neq0;~~\Rightarrow~~x^2\neq1;~~\Rightarrow~~x_{3,4}\neq\pm1](https://tex.z-dn.net/?f=2%29~%5Clog_5x%5E2%5Cneq0%3B~~%5CRightarrow~~x%5E2%5Cneq1%3B~~%5CRightarrow~~x_%7B3%2C4%7D%5Cneq%5Cpm1)
Метод интервалов и область определения
x" alt="\underline{~~~~~~~~~~~~~~~~//////~~~~~~~~~~~~~~~~////////~~~~~~~~~}\\+++(-1)---(0)}..........(5)---[6]+++>x" align="absmiddle" class="latex-formula">
Ответ : x ∈ (-1; 0) ∪ (5;6]