Из пункта А в пункт В в разное время выехали по одному и тому же маршруту грузовик и...

0 голосов
33 просмотров

Из пункта А в пункт В в разное время выехали по одному и тому же маршруту грузовик и автобус. Скорость автобуса на 12 км/ч больше скорости грузовика. Они прибыли в В одновременно. За 2,5 ч до их прибытия в пункт В навстречу им из пункта В выехал мотоцикл, который встретил грузовик на 10 мин раньше, чем автобус. Найдите скорость грузовика, если она вдвое меньше скорости мотоцикла.


Математика (4.7k баллов) | 33 просмотров
Дан 1 ответ
0 голосов

Ответ:


Пошаговое объяснение:

Пусть скорость грузовика х, тогда легкового автомобиля 1,2*х.

Рассмотрим путь мотоциклиста до встречи с грузовым и легковым автомобилями.

90*t-45=t*x    90*t-t*x=45   t*(90-x)=45 t=45/90-x, подставим

90*(t+1)-45=(t+1)*1,2*x

90*t+90-45=1,2*x*t+1,2*x

90*t+45=1,2*x*t+1/2*x

(90*45)/(90-x)+45=(1,2*x*45)/(90-x)+1,2*x

90*45+45*(90-x)=1,2*x*45+1,2*x*(90-x)

90*45+90*45-45*x=54*x+108*x-1,2*x^2

1,2*x^2-207*x+8100=0

x1,2=(207±√207^2-4*1,2*8100)/2,4=(207±63)/2,4

x1=(207+63)/2,4=112,5 не подходит, мотоцикл ехал со скоростью 90, не смог бы догнать.

x2=(207-63)/2,4=60 км/ч скорость грузовика

60*1,2=72 км/ч скорость легкового автомобиля.


Подробнее - на Znanija.com - znanija.com/task/24046954#readmore

(34 баллов)
0

тут легкового нет