В прямоугольнике ABCD проведены отрезки MK||AD, NP||AB. Докажите, что площадь...

0 голосов
60 просмотров

В прямоугольнике ABCD проведены отрезки MK||AD, NP||AB. Докажите, что площадь четырёхугольника MNKP равна 1/2 площади прямоугольника ABCD


Геометрия (27 баллов) | 60 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

      Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом  и  делят  АВСD на 4 прямоугольника, (неважно,  равной или разной площади).  Обозначим точку пересечения МК и NP буквой О.

а)

 Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.

б)

 Площадь  выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Так как S(ABCD)=AB•CD,   МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).

в)

  S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>

S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD


image
(228k баллов)