Последовательно вычислим производные первых порядков:

Что мы видим? Синусы и косинусы сменяют друг друга и во втором слагаемом накручивается степень двойки. Чтобы синусы и косинусы так менялись, нужно использовать формулы приведения. С двойкой все ясно. Теперь легко получить формулу для производной порядка n:
