![(x^2 - 8x + 7) \cdot \sqrt{ log_{5}(x^2 - 3 )} \le 0 (x^2 - 8x + 7) \cdot \sqrt{ log_{5}(x^2 - 3 )} \le 0](https://tex.z-dn.net/?f=%28x%5E2%20-%208x%20%2B%207%29%20%5Ccdot%20%5Csqrt%7B%20log_%7B5%7D%28x%5E2%20-%203%20%29%7D%20%5Cle%200)
Область определения ![\sqrt{ log_{5}(x^2 - 3 )} \sqrt{ log_{5}(x^2 - 3 )}](https://tex.z-dn.net/?f=%5Csqrt%7B%20log_%7B5%7D%28x%5E2%20-%203%20%29%7D)
0\\ log_{5}(x^2 - 3 ) \ge 0\end{cases}" alt="\begin{cases}x^2 - 3>0\\ log_{5}(x^2 - 3 ) \ge 0\end{cases}" align="absmiddle" class="latex-formula">
0\\ log_{5}(x^2 - 3 ) \ge log_51\end{cases}" alt="\begin{cases}(x- \sqrt{3} )(x+ \sqrt{3} )>0\\ log_{5}(x^2 - 3 ) \ge log_51\end{cases}" align="absmiddle" class="latex-formula">
![\begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\ x^2 - 3 \ge1\end{cases} \begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\ x^2 - 3 \ge1\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%20%5Cin%20%28-%20%5Cinfty%20%3B-%20%5Csqrt%7B3%7D%20%29%20%5Ccup%20%28%20%5Csqrt%7B3%7D%3B%2B%20%5Cinfty%20%29%5C%5C%20x%5E2%20-%203%20%5Cge1%5Cend%7Bcases%7D)
![\begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\ x^2 - 4 \ge0\end{cases} \begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\ x^2 - 4 \ge0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%20%5Cin%20%28-%20%5Cinfty%20%3B-%20%5Csqrt%7B3%7D%20%29%20%5Ccup%20%28%20%5Csqrt%7B3%7D%3B%2B%20%5Cinfty%20%29%5C%5C%20x%5E2%20-%204%20%5Cge0%5Cend%7Bcases%7D)
![\begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\(x-2)(x+2) \ge0\end{cases} \begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\(x-2)(x+2) \ge0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%20%5Cin%20%28-%20%5Cinfty%20%3B-%20%5Csqrt%7B3%7D%20%29%20%5Ccup%20%28%20%5Csqrt%7B3%7D%3B%2B%20%5Cinfty%20%29%5C%5C%28x-2%29%28x%2B2%29%20%5Cge0%5Cend%7Bcases%7D)
![\begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right) \end{cases} \begin{cases}x \in (- \infty ;- \sqrt{3} ) \cup ( \sqrt{3};+ \infty )\\x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right) \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%20%5Cin%20%28-%20%5Cinfty%20%3B-%20%5Csqrt%7B3%7D%20%29%20%5Ccup%20%28%20%5Csqrt%7B3%7D%3B%2B%20%5Cinfty%20%29%5C%5Cx%20%5Cin%20%5Cleft%28-%20%5Cinfty%20%3B-2%20%5Cright%5D%20%5Ccup%20%5Cleft%5B2%3B%2B%20%5Cinfty%5Cright%29%20%5Cend%7Bcases%7D)
![x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right) x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right)](https://tex.z-dn.net/?f=x%20%5Cin%20%5Cleft%28-%20%5Cinfty%20%3B-2%20%5Cright%5D%20%5Ccup%20%5Cleft%5B2%3B%2B%20%5Cinfty%5Cright%29)
![x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right) \Rightarrow \sqrt{ log_{5}(x^2 - 3 )} \ge 0 x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right) \Rightarrow \sqrt{ log_{5}(x^2 - 3 )} \ge 0](https://tex.z-dn.net/?f=x%20%5Cin%20%5Cleft%28-%20%5Cinfty%20%3B-2%20%5Cright%5D%20%5Ccup%20%5Cleft%5B2%3B%2B%20%5Cinfty%5Cright%29%20%5CRightarrow%20%5Csqrt%7B%20log_%7B5%7D%28x%5E2%20-%203%20%29%7D%20%5Cge%200)
--------------
![x^2 - 8x + 7 \le 0 x^2 - 8x + 7 \le 0](https://tex.z-dn.net/?f=x%5E2%20-%208x%20%2B%207%20%5Cle%200)
![D=(-8)^2-4 \cdot 1 \cdot 7=64-28=36 D=(-8)^2-4 \cdot 1 \cdot 7=64-28=36](https://tex.z-dn.net/?f=D%3D%28-8%29%5E2-4%20%5Ccdot%201%20%5Ccdot%207%3D64-28%3D36)
![\sqrt{D}= \sqrt{36} =6 \sqrt{D}= \sqrt{36} =6](https://tex.z-dn.net/?f=%5Csqrt%7BD%7D%3D%20%5Csqrt%7B36%7D%20%3D6)
![x_1= \frac{8-6}{2} = \frac{2}{2}=1 x_1= \frac{8-6}{2} = \frac{2}{2}=1](https://tex.z-dn.net/?f=x_1%3D%20%5Cfrac%7B8-6%7D%7B2%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%3D1)
![x_2= \frac{8+6}{2} = \frac{14}{2}=7 x_2= \frac{8+6}{2} = \frac{14}{2}=7](https://tex.z-dn.net/?f=x_2%3D%20%5Cfrac%7B8%2B6%7D%7B2%7D%20%3D%20%5Cfrac%7B14%7D%7B2%7D%3D7)
![x \in \left[ 1;7\right] x \in \left[ 1;7\right]](https://tex.z-dn.net/?f=x%20%5Cin%20%5Cleft%5B%201%3B7%5Cright%5D)
![\begin{cases} x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right)\\ x \in \left[ 1;7\right]\end{cases} \begin{cases} x \in \left(- \infty ;-2 \right] \cup \left[2;+ \infty\right)\\ x \in \left[ 1;7\right]\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%20%5Cin%20%5Cleft%28-%20%5Cinfty%20%3B-2%20%5Cright%5D%20%5Ccup%20%5Cleft%5B2%3B%2B%20%5Cinfty%5Cright%29%5C%5C%20x%20%5Cin%20%5Cleft%5B%201%3B7%5Cright%5D%5Cend%7Bcases%7D)
![x \in \left[ 2;7\right] x \in \left[ 2;7\right]](https://tex.z-dn.net/?f=x%20%5Cin%20%5Cleft%5B%202%3B7%5Cright%5D)
Ответ
![x \in\left\{-2 \right\} \cup \left[ 2;7\right] x \in\left\{-2 \right\} \cup \left[ 2;7\right]](https://tex.z-dn.net/?f=x%20%5Cin%5Cleft%5C%7B-2%20%5Cright%5C%7D%20%5Ccup%20%5Cleft%5B%202%3B7%5Cright%5D)