Видимо, задана функция распределения случайной величины t: F(t) = Pr(x < t), нужно найти матожидание и дисперсию x.
F(x) непрерывна в точке 0 (пределы слева и справа одинаковые, равны нулю) и может быть разрывна в точке 2 (предел слева 8C, предел справа 1). По свойствам функции распределения 0 <= 8C <= 1, скачок в точке x = 2 равен 1 - 8C. </p>
Получаем смесь распределений: x = 2 с вероятностью 1 - 8C, c вероятностью 8C случайная величина распределена с плотностью вероятности p(x) = (Cx^3)' / 8C = 3x^2 / 8 на отрезке [0, 2].
Матожидание:

Дисперсия:
