Ответ:
Пошаговое объяснение:
Общую схему рассмотрим в примере 1) 2,1(6).
Пусть число а,b(c) периодичное, где а - целая часть, b - число в предпериоде, c - число в периоде, в нашем примере а=2, b=1, c=6. Чтобы преобразовать эту дробь в обыкновенную нужно придерживаться следующему правилу:
а) Считаем количество цифр в периоде десятичной дроби и обозначаем количество цифр через k, в нашем примере k=1, так как число 6 состоит из одной цифры;
б) Считаем количество цифр, стоящих в предпериоде, то есть количество цифр, стоящих после запятой, но до периода десятичной дроби и обозначаем количество цифр через m, в нашем примере m=1, так как число 1 состоит из одной цифры;
в) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа
, в нашем примере n=16;
г) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа
, в нашем примере s=1;
д) Подставляем найденные значения в формулу
Нетрудно видеть, что состоит из k цифр 9, а из m цифр 0 после 1.
В нашем примере
2) 5,14(33) ⇒ a=5, k=2, m=2, n=1433, s=14. Тогда
3) 0,11(35) ⇒ a=0, k=2, m=2, n=1135, s=11. Тогда
4) 0,214(45) ⇒ a=0, k=2, m=3, n=21445, s=214. Тогда