Математический анализ.Предел функции

0 голосов
29 просмотров

Математический анализ.Предел функции


image

Математика (12 баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

\lim_{x \to 1} \frac{sin(\pi x)(x^2+1)}{x^2-1}=[0/0]=

=\lim_{x \to 1} \frac{(sin(\pi x)(x^2+1))'}{(x^2-1)'}=\lim_{x \to 1} \frac{-(x^2+1)\pi cos(\pi x)+2xsin(\pi x)}{2x}=

= \lim_{x \to 1} \frac{-(1+1)\pi+0}{2}=-\pi


(650 баллов)