Чтобы найти координаты точки пересечения M(x₀; y₀) графиков функций, нужно решить систему уравнений.
x=-14:(-14)==>x=1\\\\\left\{{{y=6-9x}\atop{x=1}}\right.\\ \\\left\{{{y=6-9*1}\atop{x=1}}\right.\\\\\left\{{{y=-3}\atop{x=1}}\right." alt="\left\{{{y=6-9x}\atop{y=5x-8}}\right.\\\\\left\{{{y=6-9x}\atop{6-9x=5x-8}}\right.\\\\\left\{{{y=6-9x}\atop{-9x-5x=-6-8}}\right.\\\\\left\{{{y=6-9x}\atop{-14x=-14}}\right.==>x=-14:(-14)==>x=1\\\\\left\{{{y=6-9x}\atop{x=1}}\right.\\ \\\left\{{{y=6-9*1}\atop{x=1}}\right.\\\\\left\{{{y=-3}\atop{x=1}}\right." align="absmiddle" class="latex-formula">
Получили x₀ = 1 ; y₀ = - 3 - это и есть координаты точки пересечения M(x₀; y₀)
Ответ: (1: - 3)