![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%2By%3D9%7D+%5Catop+%7B2%5Ex-2%5Ey%3D16%7D%7D+%5Cright.+%3C%3D%3E+%5Cleft+%5C%7B+%7B%7By%3D9-x%7D+%5Catop+%7B2%5Ex-2%5E%7B9-x%7D%3D16%7D%7D+%5Cright.%5C%5C%5C%0A2%5Ex-%5Cfrac%7B2%5E9%7D%7B2%5Ex%7D%3D16%5C%5C%5C%0A2%5E%7B2x%7D-512%3D16%2A2%5Ex%5C%5C%5C%0A2%5E%7B2x%7D-16%2A2%5Ex-512%3D0%5C%5C%5C%0A2%5Ex%3Dt%5C%5C%5C%0At%5E2-16t-512%3D0%5C%5C%5C%0AD%3D256%2B2048%3D2304%3D48%5E2%5C%5C%5C%0At_1%3D%5Cfrac%7B16-48%7D%7B2%7D%3D-16%5C+%5C+%5C+%5C++%5C+t_2%3D%5Cfrac%7B16%2B48%7D%7B2%7D%3D32)
\left \{ {{y=9-x} \atop {2^x-2^{9-x}=16}} \right.\\\
2^x-\frac{2^9}{2^x}=16\\\
2^{2x}-512=16*2^x\\\
2^{2x}-16*2^x-512=0\\\
2^x=t\\\
t^2-16t-512=0\\\
D=256+2048=2304=48^2\\\
t_1=\frac{16-48}{2}=-16\ \ \ \ \ t_2=\frac{16+48}{2}=32" alt=" \left \{ {{x+y=9} \atop {2^x-2^y=16}} \right. <=> \left \{ {{y=9-x} \atop {2^x-2^{9-x}=16}} \right.\\\
2^x-\frac{2^9}{2^x}=16\\\
2^{2x}-512=16*2^x\\\
2^{2x}-16*2^x-512=0\\\
2^x=t\\\
t^2-16t-512=0\\\
D=256+2048=2304=48^2\\\
t_1=\frac{16-48}{2}=-16\ \ \ \ \ t_2=\frac{16+48}{2}=32" align="absmiddle" class="latex-formula">
-16 не удовлетворяет области значения квадратичной функции
Ответ: (5; 4)