Раз наш участок можно будет огородить забором в 300 метров, то его периметр не должен превышать 300.
Пусть
и
- две стороны нашего участка, тогда
.
Площадь прямоугольника - произведение двух смежных его сторон.
Составим функцию площади нашего участка в зависимости, например, от стороны
.

Но
, следовательно, наша функция принимает вид

С помощью производной найдём экстремум данной функции.

Т.к. исходная функция - парабола с опущенными вниз ветвями, то данная точка - максимум функции. Следовательно, при условии периметра в 300 метров, для достижения наибольшей площади участка одна из сторон должна быть равна 75 метров, значит, другая сторона также должна быть 75 метров (
).
Получаем максимальную площадь
квадратных метров.
Ответ.
кв. м.