Пусть тр-к АВС, угол А - прямой, гипотенуза ВС=50мм. Ну, во-первых, найдем длину обоих катетов. По Пифагору ВС² = АВ²+АС² или 50² = (4Х)²+(3Х)², откуда Х=10мм. Значит АВ=4Х = 40мм, а АС=3Х = 30мм.
Теперь вспомним, что в прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
То есть имеем подобные треугольники: АВС, КВА и КАС, где точка К - точка пересечения высоты с гипотенузой. Из подобия имеем:АВ/КВ = ВС/ВА. Подставляем значения: 40/КВ = 50/40, откуда КВ = 32мм. А КС тогда равна 18мм
Итак, отрезки, на которые гипотенуза делится высотой, проведенной из вершины прямого угла равны 32мм и 18мм.