Диагонали параллелограмма равны 5 и 28, а угол между ними равен 30°. Найдите площадь...

0 голосов
478 просмотров

Диагонали параллелограмма равны 5 и 28, а угол между ними равен 30°. Найдите площадь этого параллелограмма


Геометрия (15 баллов) | 478 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Ответ:

35

Объяснение:

Площадь любого четырехугольника можно найти как половину произведения его диагоналей на синус угла между ними:

Sabcd = 1/2 AC · BD · sin∠AOB

Sabcd = 1/2 · 28 · 5 · sin30° = 14 · 5 · 1/2 = 7 · 5 = 35 кв. ед.


image
(80.1k баллов)