0 \ \ } \atop \bigg{x-5 \leqslant 11}} \right. \ \ \ \ \ \left \{ {\bigg{x>5 \ \ } \atop \bigg{x \leqslant 16}} \right." alt="0,9 < 1 \Rightarrow y = \text{log}_{0,9} \downarrow \\\left \{ {\bigg{x-5>0 \ \ } \atop \bigg{x-5 \leqslant 11}} \right. \ \ \ \ \ \left \{ {\bigg{x>5 \ \ } \atop \bigg{x \leqslant 16}} \right." align="absmiddle" class="latex-formula">
1\\\log_{x}(x^{2} + 3x - 8) > \log_{x}x" alt="2) \ \log_{x}(x^{2} + 3x - 8) > 1\\\log_{x}(x^{2} + 3x - 8) > \log_{x}x" align="absmiddle" class="latex-formula">
0; x = -1,5 + \sqrt{41}; x \in (-1,5 + \sqrt{41}; + \infty)" alt="D(y): x^{2} + 3x - 8 > 0; x = -1,5 + \sqrt{41}; x \in (-1,5 + \sqrt{41}; + \infty)" align="absmiddle" class="latex-formula">
1 \Rightarrow y = \log_{x} \uparrow\\\begin{equation*} \begin{cases} x > 1, \\ x^{2} + 3x - 8 > x. \end{cases}\end{equation*}" alt="\text{a)} \ x > 1 \Rightarrow y = \log_{x} \uparrow\\\begin{equation*} \begin{cases} x > 1, \\ x^{2} + 3x - 8 > x. \end{cases}\end{equation*}" align="absmiddle" class="latex-formula">
1, \\ x_{1} = -4; \ x_{2} = 2. \end{cases}\end{equation*}" alt="\begin{equation*} \begin{cases}x > 1, \\ x_{1} = -4; \ x_{2} = 2. \end{cases}\end{equation*}" align="absmiddle" class="latex-formula">
При , то
1, \\ x^{2} + 3x - 8 < x. \end{cases}\end{equation*}" alt="\text{b)} \ x < 1 \Rightarrow y = \log_{x} \downarrow \\\begin{equation*} \begin{cases}x > 1, \\ x^{2} + 3x - 8 < x. \end{cases}\end{equation*}" align="absmiddle" class="latex-formula">
При , то