Могу помочь со вторым заданием:
В трапеции АВСД проведен отрезок ВЕ так, что он делит трапецию на параллелограмм ВСДЕ и треуг. АВЕ. Рассмотрим треуг. АВЕ. В нем известно два угла - угол ВАС и угол АВЕ, значит мы можем найти третий угол - АЕВ и равен он будет 180-(40+75) = 65*. Но угол АЕВ - часть развернутого угла АЕД и значит мы можем найти угол ВЕД и равен он будет 180-65 = 115*. Но угол СВЕ = углу ВЕА как накрест лежащие углы при пересечении параллельных с отрезками ВС и АД. Значит угол СВЕ тоже будет равен 65*. А в параллелограмме противоположные углы равны и, т.о. угол Д тоже будет равен 65*.