Пусть p простое число и больше 5. Обоснуйте , что при делении числа p в квадрате ** 5...

0 голосов
18 просмотров

Пусть p простое число и больше 5. Обоснуйте , что при делении числа p в квадрате на 5 получаем остаток 1 или 4 ;а при делении p в квадрате на 24 получаем 1.


Математика (349 баллов) | 18 просмотров
Дан 1 ответ
0 голосов

Число p простое большее 5 значит имеет вид

5к+1 или 5к+2 или 5к+3 или 5к+4

При возведении в квадрат получаем

25к^2+10k+1,    25к^2+20k+4,    25к^2+30k+5+4,   25к^2+40k+15+1

Видно, что остатки квадратов от деления на 5 равны или 1 или 4.


p^2-1=(p-1)(p+1)

р - простое, большее 5, значит нечетное значит при делении на 4 имеет в остатке 1 или 3. Тогда одно из р-1 или р+1 делится на 4, а другое на 2, значит произведение p^2-1=(p-1)(p+1) делится на 8.

При делении на 3 число р дает в остатке 2 или 1, тогда одно из р-1 или р+1 делится на 3. значит и p^2-1=(p-1)(p+1) делится на 3.


Так как число р^2-1 делится одновременно на взаимно простые числа 3 и 8 значит оно делится на 24. значит само число р^2 при делении на 24 дает в остатке 1.


(7.2k баллов)