Докажите что при любом значении n дробь n^3-2n^2+n-1/n^2+1 не является целым числом

0 голосов
40 просмотров

Докажите что при любом значении n дробь n^3-2n^2+n-1/n^2+1 не является целым числом


Математика (18 баллов) | 40 просмотров
Дан 1 ответ
0 голосов

Пусть n^3-2n^2+n-1=кn^2+к, где к -целое.

n^2*(n-2-k)=1+k-n

n^2*(n-2-k)=2+k-n-1

(n^2+1)*(n-2-k)=-1

Очевидно в условии должно быть  сказано натуральном  n , иначе при n равном 0, выражение целое!

-----------------------------------------------------------------------------

При натуральном n, очевидно последнее равенство не выполняется.

(подставим n=3+k или n=1+k и убедимся в том, что равенство не выполняется.



(62.1k баллов)