0}} \right. \\ \\ \left \{ {{2x-5}\geq0 \atop {x^2-9<0}} \right. \\ \\ \left \{ {{2x}\geq5 \atop {(x-3)(x+3)<0}} \right. \\ \\ \left \{ {{x}\geq 2.5 \atop {-3<x<3}} \right. \\ \\ x\in[2.5;3)\\ \\" alt="y= \frac{9x}{\sqrt{9-x^2} } +\sqrt{2x-5} \\ \\ \left \{ {{2x-5}\geq0 \atop {9-x^2>0}} \right. \\ \\ \left \{ {{2x-5}\geq0 \atop {x^2-9<0}} \right. \\ \\ \left \{ {{2x}\geq5 \atop {(x-3)(x+3)<0}} \right. \\ \\ \left \{ {{x}\geq 2.5 \atop {-3<x<3}} \right. \\ \\ x\in[2.5;3)\\ \\" align="absmiddle" class="latex-formula">
область определения
x∈R: 2.5≤x<3</strong>